

In this chapter you will:

 Learn about stacks
 Examine various stack operations
 Learn how to implement a stack as an array
 Learn how to implement a stack as a linked list
 Discover stack applications
 Learn about queues
 Examine various queue operations
 Learn how to implement a queue as an array
 Learn how to implement a queue as a linked list
 Discover queue applications

11.1. Introduction
11.2. Stack Abstract Data Type
11.3. Formula based representation of Stack ADT
11.4. Linked representation of Stack ADT
11.5. Stack applications
11.6. Queue Abstract Data Type
11.7. Formula based representation of Queue ADT
11.8. Linked representation of Queue ADT
11.9. Queue applications
11.10. Summary
11.11. Technical Terms
11.12. Model Questions
11.13. References

Lesson 11 : Stacks and Queues

Objectives:

SSttrruuccttuurree ooff tthhee LLeessssoonn::

A data object is a set of instances or values. The
individual instances of a data object are either primitive (or
atomic) or composed of instances of another data object.
If an individual instance of a data object is not atomic,
then its components are called elements. The instances of
a data object as well as the elements that constitute
individual instances are generally related in some way. In
addition to that a set of functions is generally associated
with any data object. These functions may transform one
instance of an object into another instance of that object,
and into an instance of another object also. It may create
a new instance without transforming the instances from
which the new instance is created.

Boolean, Digit, Letter, NaturalNumber, Integer etc… are
examples of data objects. True and False are the instances
of Boolean. 0,1,…,9 are the instances of Digit.

A data structure is a data object together with the
relationships that exist among the instances and among
the individual elements that compose an instance.

Stacks and Queues are most frequently used data
structures. Both are linear data structures. A stack is called
a Last-In First-Out (LIFO) list. Elements are pushed onto
the stack at one end, called top of the stack, and removed
from the same end. The last element pushed on to the
stack is the one to come out first. A common model of a
stack is a plate or coin stacker. Plates are "pushed" onto to
the top and "popped" off the top.

1111..11..IInnttrroodduuccttiioonn

A stack data structure is generally implemented with two
principle operations push and pop.

Push : Adds an item to the stack
Pop : Removes the most recently pushed item from
the stack.

Given a stack S=(A1, A2, A3, … An) then we say that a1 is
the bottommost element and element Ai) is on top of
element Ai-1, 1<i<=n.

The restrictions on a stack
imply that if the elements
A, B, C, D, E are added to
the stack, in that order,
then the first element to
be removed/deleted must
be E. Equivalently we say
that the last element to be
inserted into the stack will
be the first to be
removed. For this reason
stacks are sometimes

referred to as Last In First Out (LIFO) lists.

A Queue is First-In First-Out
(FIFO) data structure. Elements
are inserted into a queue from
the ‘rear end’ and removed from
the ‘front end’. Given a queue
Q=(A1, A2, A3, …, An) then we
say that A1 is the first element
and the element Ai is in front of
the element Ai-1, 1<i<=n.

If the elements A, B, C, D, E are added to the queue, in
that order, then the first element to be removed/deleted
must be A. Equivalently we say that the first element to be
inserted into the queue will be the first to be removed. For
this reason queues are referred to as First In First Out
(FIFO) lists.

Circular Queue

A circular queue is a particular implementation of a queue.
It is very efficient and quite useful. A circular queue
consists of an array that contains the items in the queue,
two array indexes and an optional length. The indexes are
called the head and tail pointers and are labeled H and T
on the diagram.

The head pointer points to the first element in the queue,
and the tail pointer points just beyond the last element in
the queue. If the tail pointer is before the head pointer,
the queue wraps around the end of the array.

1111..22.. SSttaacckk AAbbssttrraacctt DDaattaa TTyyppee

The problem with circular queue is that, having the head
and tail point to the same element would indicate both an
empty queue and a full queue. There are two ways around
this: either maintain a variable with the number of items in
the queue, or create the array with one more element that
you will actually need so that the queue is never full.

Insertion and deletion are very simple in a circular queue.
To insert, write the element to the tail index and increment
the tail, wrapping if necessary (using modulo arithmetic).
To delete, save the head element and increment the head,
wrapping if necessary (using modulo arithmetic). Instead
of using a modulus operator for wrapping (mod in Pascal, %
in C) you can use an if statement or (even better) make
the size of the array a power of two and simulate the mod
with a binary and (& in C).

As an abstract data type, the stack is a container (data
structure) of nodes and has two basic operations: push
and pop. Push adds a given node to the top of the stack
leaving previous nodes below. Pop removes and returns
the current top node of the stack. The Stack ADT is given
below:

AbstractDataType Stack{
 instances
 Linear list of elements, one end called top.
 operations
 Create (): Create an empty stack;
 IsEmpty(): Return true if the stack is empty, false

otherwise;
IsFull(): Return true if the stack is full, false

otherwise;
 Top(): Return top element of stack;
 Push(x): Place the element x on the top of the stack;

1111..33.. FFoorrmmuullaa bbaasseedd rreepprreesseennttaattiioonn ooff SSttaacckk AADDTT

 Pop(x) : Remove the top element from stack and
assign it to x;

}

In formula based representation, a single dimensional
array is used to contain the elements of the stack. The
following C++ code implements the stack ADT using a
linear array.

template <class T>
class Stack{
 //LIFO objects.
 public:
 Stack(int maxStacSize=10);
 ~Stack() { delete[] stackList; }
 bool isEmpty() const { return (top == -1); }
 bool isFull() const { return (top == maxSize); }
 T top() const;
 Stack<T>& push(const T& x);
 Stack<T>& pop(T& x);
 private:
 int top, maxSize;
 T *stackList;
};

template<class T>
Stack<T>::Stack(int maxStackSize)
{// Stack constructor.
 maxSize = maxStackSize – 1;
 stackList = new T[maxStackSize];
 top = -1;
}

template<class T>

1111..44.. LLiinnkkeedd rreepprreesseennttaattiioonn ooff SSttaacckk AADDTT

Stack<T>::Top() const
{//Return top element.
 if(isEmpty()) throw OutOfBounds();
 else return stackList[top];
}

template<class T>
Stack<T>& Stack<T>::push(const T& x)
{// Add x to stack.
 if(isFull()) throw NoMem();

stackList[++top] = x;
return *this;

}

template<class T>
Stack<T>& Stack<T>::pop(T& x)
{//pop top element from stack and put it in x.
 if(isEmpty()) throw OutOfBounds();
 x = stackList[top--]; return *this;
 }

The previous section gave the array representation of
stack. Although it is an elegant method, it may lead to
wastage of memory space when multiple stacks are to
coexist in memory. In such cases stacks can be
represented efficiently using a linked list for each stack.
The following C++ code gives the linked list
implementation of stack.

template <class Type>
class Node
{
 public:
 Type info;

 Node<Type> *link;
};

template<class Type>
class linkedStackType
{
public:
 bool isEmptyStack() const;
 //Function to determine whether the stack is empty.
 //Postcondition: Returns true if the stack is empty,
 // otherwise returns false.

 void destroyStack();
 //Function to remove all the elements of the stack,
 //leaving the stack in an empty state.
 //Postcondition: stackTop = NULL

 void push(const Type& newItem);
 //Function to add newItem to the stack.
 //Precondition: The stack exists and is not full.
 //Postcondition: The stack is changed and newItem
 // is added to the top of the stack.

 Type top() const;
 //Function to return the top element of the stack.
 //Precondition: The stack exists and is not empty.
 //Postcondition: If the stack is empty, the program
 // terminates; otherwise, the top element
 // of the stack is returned.

 void pop(Type& item);
 //Function to remove the top element of the stack.
 //Precondition: The stack exists and is not empty.
 //Postcondition: The stack is changed and the top
 //element is removed from the stack.

 linkedStackType();

 //default constructor
 //Postcondition: stackTop = NULL

private:
 Node<Type> *stackTop; //pointer to the stack

};

template<class Type> //default constructor
linkedStackType<Type>::linkedStackType()
{
 stackTop = NULL;
}

template<class Type>
void linkedStackType<Type>::destroyStack()
{
 Node<Type> *temp; //pointer to delete the node

 while (stackTop != NULL)

//while there are elements in the stack
 {
 temp = stackTop;
 //set temp to point to the current node
 stackTop = stackTop->link;
 //advance stackTop to the next node
 delete temp;
 //deallocate memory occupied by temp
 }
}// end destroyStack

template<class Type>
bool linkedStackType<Type>::isEmptyStack() const
{
 return(stackTop == NULL);
}

template<class Type>
void linkedStackType<Type>::push(const Type&
newElement)
{
 Node<Type> *newNode;
 //pointer to create the new node
 newNode = new Node<Type>; //create the node
 assert(newNode != NULL);
 newNode->info = newElement;
 //store newElement in the node
 newNode->link = stackTop;
 //insert newNode before stackTop
 stackTop = newNode;
 //set stackTop to point to the top node
} //end push

template<class Type>
Type linkedStackType<Type>::top() const
{
 assert(stackTop != NULL);
 //if stack is empty terminate the program
 return stackTop->info; //return the top element
}//end top

template<class Type>
void linkedStackType<Type>::pop(Type& item)
{
 Node<Type> *temp;
 //pointer to deallocate memory
 if (stackTop != NULL) {
 temp = stackTop;
 //set temp to point to the top node
 stackTop = stackTop->link;
 //advance stackTop to the next node
 item = temp->info;
 delete temp; //delete the top node
 }

 else
 cout << "Cannot remove from an empty stack."
 << endl;
}//end pop

 //destructor
template<class Type>
linkedStackType<Type>::~linkedStackType()
{
 destroyStack();
}//end destructor

Most of the high-level language programs (even C!) make
use of a stack frame for the working memory of each
procedure or function invocation. When any procedure or
function is called, a number of words (together called a
stack frame) are pushed onto a program stack. When the
procedure or function returns, this frame of data is popped
off the stack. Like this there are many applications of stack
data structure in computer science.

Towers of Hanoi problem – A stack application.

In the Towers of Hanoi problem, you are given n disks and
three towers. The disks are initially stacked on tower 1 in
increasing order of size from bottom to top. You are to
move the disks to tower 2 using tower 3, one disk at a
time, such that no disk is ever on top of a smaller one. A
solution for this problem using recursive method is given
below:

1111..55.. SSttaacckk AApppplliiccaattiioonnss

step 1 : move the top n-1 disks from tower 1 to tower 3.

step 2 : move the bottom disk from tower 1 to tower 2.

step 3 : move the n-1 disks from tower 3 to tower 2.

The following is a recursive function to solve Towers of
Hanoi problem.

void towersOfHanoi(int n, int x, int y, int z)
{
 // Move the top n disks from tower x to tower y.
 // Use tower z fro intermediate storage.
 if(n>0)
 {
 towersOfHanoi(n-1, x, z, y);
 cout<<”move top disk from tower “<<x
 <<” to top of tower “<<y<<endl;
 towersOfHanoi(n-1, z, y, x);
 }
}

A non-recursive function can be written for this problem
using a formula based stack. The following C++ code gives
a non-recursive function to solve the Towers of Hanoi
problem.

class Hanoi{
 friend void TowersOfHanoi(int);
 public:
 void TowersOfHanoi(int n, int x, int y, int z);
 private:
 Stack<int> *s[4]; // array of pointers to stacks.
};

void Hanoi::TowersOfHanoi(int n, int x, int y, int z)

{//Move the top n disks from tower x to tower y.
 //Use tower z for intermediate storage.
 int d; // disk nuber.
 if(n > 0) {
 TowersOfHanoi(n-1, x, z, y);
 s[x]->pop(d);
 s[y]->push(d);
 showstate();
 TowersOfHanoi(n-1, z, y, x);
 }
}

void TowersOfHanoi(int n)
{
 // Preprocessor for Hanoi::towersOfHanoi.
 Hanoi x;
 // create three stacks of size n each.
 x.s[1] = new Stack<int> (n);
 x.s[2] = new Stack<int> (n);
 x.s[3] = new Stack<int> (n);

 for(int d = n; d > 0; d--) // initialize
 x.s[1] ->push(d); // add disk d to tower 1.
 // move n disks from tower 1 to tower 3
 //using 2 as intermediate.
 x.TowersOfHanoi(n, 1, 2, 3);
}

Queue is a First-In First-Out data structure. Elements are
inserted into the queue at the rear end. They are removed
from the queue at the front end. The Queue data structure
is implemented with two basic operations insert() and
delete(). Corresponding to the two ends this data
structure uses two index variables or pointer variables. The
Queue ADT is given below:

AbstractDataType Queue {
 instances
 ordered list of elements. One end is called front, the
other rear.
 operations:
 Create(): Create an empty queue;
 IsEmpty(): Return true if queue is empty, return
 false otherwise;
 IsFull(): Return true if queue is full, false otherwise;
 First() : Return first element of queue;
 Last() : Return last element of queue;
 Insert(x) : Add element x to the queue;
 Delete(x) : Delete front element from queue and put
 it in x;
}

The formula based representation uses an linear array to
hold the queue elements, two index variables front and
rear and an optional count variable. The following C++
code shows the formula based representation of queue.

1111..66.. QQuueeuuee AAbbssttrraacctt DDaattaa TTyyppee

1111..77.. FFoorrmmuullaa BBaasseedd RReepprreesseennttaattiioonn ooff QQuueeuuee AADDTT

template<class Type>
class Queue
{
public:

 bool isEmpty () const;
 //Function to determine whether the queue is empty.
 //Postcondition: Returns true if the queue is empty,
 // otherwise returns false.

 void initializeQueue();
 //Function to initialize the queue to an empty state.
 //Postcondition: count = 0; queueFront = 0;
 // queueRear = maxQueueSize – 1

 bool isFull () const;
 void destroy ();
 //Function to remove all the elements from the queue.
 //Postcondition: count = 0; queueFront = 0;
 // queueRear = maxQueueSize – 1

 Type first() const;
 //Function to return the first element of the queue.
 //Precondition: The queue exists and is not empty.
 //Postcondition: If the queue is empty, the program
 // terminates; otherwise, the first
 // element of the queue is returned.
 Type last() const;
 //Function to return the last element of the queue.
 //Precondition: The queue exists and is not empty.
 //Postcondition: If the queue is empty, the program
 // terminates; otherwise, the last
 // element of the queue is returned.

 void insert(const Type& queueElement);
 //Function to add queueElement to the queue.
 //Precondition: The queue exists and is not full.
 //Postcondition: The queue is changed and
 queueElement is added to the queue.

 void deleteQ ();
 //Function to remove the first element of the queue.
 //Precondition: The queue exists and is not empty.
 //Postcondition: The queue is changed and the first
 // element is removed from the queue.

 Queue(int queueSize = 100);
 //constructor
 ~Queue();
 //destructor

private:
 int maxQueueSize; //variable to store the maximum
 //queue size
 int count; //variable to store the number of
 //elements in the queue
 int queueFront; //variable to point to the first
 //element of the queue
 int queueRear; //variable to point to the last
 //element of the queue
 Type *list; //pointer to the array that holds
 //the queue elements
};

template<class Type>
void Queue<Type>::initializeQueue()
{
 queueFront = 0;
 queueRear = maxQueueSize - 1;
 count = 0;
}
template<class Type>
void Queue<Type>::destroy ()
{
 queueFront = 0;
 queueRear = maxQueueSize - 1;
 count = 0;
}

template<class Type>
bool queueType<Type>::isFull () const
{
 return(count == maxQueueSize);
}

template<class Type>
bool Queue<Type>::isEmpty () const
{
 return(count == 0);
}

template<class Type>
void Queue<Type>::insert(const Type& newElement)
{
 if (!isFull ()) {
 queueRear = (queueRear + 1) % maxQueueSize;
 //use mod operator to advance queueRear because
 //the array is circular
 count++;
 list[queueRear] = newElement;
 }
 else cout << "Cannot add to a full queue." << endl;
}

template<class Type>
Type Queue<Type>::first() const
{
 assert(!isEmpty());
 return list[queueFront];
}

template<class Type>
Type Queue<Type>::last() const
{
 assert(!isEmpty());
 return list[queueRear];
}

template<class Type>
void Queue<Type>::deleteQ()
{
 if (!isEmpty())
 {
 count--;
 queueFront = (queueFront + 1) % maxQueueSize;

//use the mod
 //operator to advance queueFront
 //because the array is circular
 }
 else
 cout << "Cannot remove from an empty queue" <<
endl;
}

//constructor
template<class Type>
Queue<Type>::Queue(int queueSize)
{
 if (queueSize <= 0) {
 cout << "Size of the array to hold the queue must "
 << "be positive." << endl;
 cout << "Creating an array of size 100." << endl;

 maxQueueSize = 100;
 }
 else
 maxQueueSize = queueSize;

//set maxQueueSize to queueSize

 queueFront = 0; //initialize queueFront
 queueRear = maxQueueSize - 1; //initialize queueRear
 count = 0;
 list = new Type[maxQueueSize];

//create the array to
 //hold the queue elements
 assert(list != NULL);
}

template<class Type>
Queue<Type>::~Queue() //destructor
{
 delete [] list;
}

The linked representation uses a linear linked list to hold
the queue elements. Pointers to the first and last nodes in
the list are stored in pointer variables front and rear. New
nodes are inserted using rear pointer. Nodes are deleted
from the queue using front pointer.

template <class Type>
class QNode
{
public:
 Type info;
 QNode<Type> *link;
};

template<class Type>
class linkedQueueType
{
public:

 bool isEmpty() const;
 //Function to determine whether the queue is empty.
 //Postcondition: Returns true if the queue is empty,
 // otherwise returns false.
 bool isFull() const;
 //Function to determine whether the queue is full.
 //Postcondition: Returns true if the queue is full,
 // otherwise returns false.

1111..88.. LLiinnkkeedd rreepprreesseennttaattiioonn ooff qquueeuuee AADDTT

 void destroy();
 //Function to delete all the elements from the queue.
 //Postcondition: queueFront = NULL;
 //queueRear = NULL
 void initializeQueue();
 //Function to initialize the queue to an empty state.
 //Postcondition: queueFront = NULL;
 //queueRear = NULL

 Type first() const;
 //Function to return the first element of the queue.
 //Precondition: The queue exists and is not empty.
 //Postcondition: If the queue is empty, the program
 // terminates; otherwise, the first
 // element of the queue is returned.
 Type last() const;
 //Function to return the last element of the queue.
 //Precondition: The queue exists and is not empty.
 //Postcondition: If the queue is empty, the program
 // terminates; otherwise, the last
 // element of the queue is returned.

 void insert(const Type& queueElement);
 //Function to add queueElement to the queue.
 //Precondition: The queue exists and is not full.
 //Postcondition: The queue is changed and
 // queueElement is added to the queue.

 void deleteQueue();
 //Function to remove the first element of the queue.
 //Precondition: The queue exists and is not empty.
 //Postcondition: The queue is changed and the first
 // element is removed from the queue.

 linkedQueueType();
 //default constructor
 ~linkedQueueType(); //destructor

private:
 QNode<Type> *queueFront; //pointer to the front of
 //the queue
 QNode<Type> *queueRear; //pointer to the rear of
 //the queue
};

template<class Type>
linkedQueueType<Type>::linkedQueueType() //default
constructor
{
 queueFront = NULL; // set front to null
 queueRear = NULL; // set rear to null
}

template<class Type>
bool linkedQueueType<Type>::isEmpty() const
{
 return(queueFront == NULL);
}
template<class Type>
bool linkedQueueType<Type>::isFull() const{
 return false;
}
template<class Type>
void linkedQueueType<Type>::destroy()
{
 QNode<Type> *temp;
 while(queueFront!= NULL){
 //while there are elements left in the queue
 temp = queueFront;
 //set temp to point to the current node
 queueFront = queueFront->link;
 //advance first to the next node
 delete temp;
 //deallocate memory occupied by temp
}
 queueRear = NULL; //set rear to NULL
}

template<class Type>
void linkedQueueType<Type>::initializeQueue()
{
 destroyQueue();
}

template<class Type>
void linkedQueueType<Type>::insert(const Type&
newElement)
{
 QNode<Type> *newNode;

 newNode = new QNode<Type>; //create the node
 assert(newNode != NULL);

 newNode->info = newElement; //store the info
 newNode->link = NULL;
 //initialize the link field to NULL
 if(queueFront == NULL)
 //if initially the queue is empty
 {
 queueFront = newNode;
 queueRear = newNode;
 }
 else //add newNode at the end
 {
 queueRear->link = newNode;
 queueRear = queueRear->link;
 }
}//end insert

template<class Type>
Type linkedQueueType<Type>::first() const
{
 assert(queueFront != NULL);
 return queueFront->info;
}

template<class Type>
Type linkedQueueType<Type>::last() const
{
 assert(queueRear!= NULL);
 return queueRear->info;
}

template<class Type>
void linkedQueueType<Type>::deleteQueue()
{
 QNode<Type> *temp;

 if(!isEmpty())
 {
 temp = queueFront;

//make temp point to the first node
 queueFront = queueFront->link;
 //advance queueFront
 delete temp;
 //delete the first node
 if(queueFront == NULL)
 //if after deletion the queue is empty
 queueRear = NULL;
 //set queueRear to NULL
 }
 else
 cerr<<"Cannot remove from an empty queue “
 <<endl;
}//end deleteQueue

template<class Type>
linkedQueueType<Type>::~linkedQueueType()
//destructor
{
 QNode<Type> *temp;
 while(queueFront != NULL)
 //while there are elements left in the queue
 {
 temp = queueFront;

//set temp to point to the current node
 queueFront = queueFront->link;

//advance first to the next node
 delete temp;
 //deallocate memory occupied by temp
 }
 queueRear = NULL; // set rear to null
}

Railroad Car Rearrangement Problem
Problem description: A freight train has n railroad cars.
Each is to be left at a different station. Assume that the n
stations are numbered 1 through n and that the freight
train visits these stations in the order n through 1. The
railroad cars are labeled by their destination. To facilitate
removal of the railroad cars from the train, we must
reorder the cars so that they are in the order 1 through n
from front to back. When the cars are in this order, the
last car is detached at each station. The cars are
rearranged at a shunting yard that has an input track, an
output track, and k holding tracks between the input and
output tracks. The following figure shows a shunting yard
with k=3 holding tracks H1, H2, and H3. The n cars of the
freight train begin in the input track and are to end up in
the output track in the order 1 through n from right to left.
 To rearrange the cars, we examine the cars on the
input track from front to back. If the car being examined is
the next one in the output arrangement, we move it
directly to the output track. If not, we move it to a holding
track and leave it there until it is time to place it in the
output. The holding tracks operate in a FIFO manner as
cars enter and leave these tracks from the top. When
rearranging cars only the following moves are allowed.

1111..99.. QQuueeuuee AApppplliiccaattiioonnss

1. A car may be moved from the front of the input track
into one of the holding tracks or the left of the
output track.

2. A car may be moved from the front of a holding
track to the left end of the output track.

Solution
When a car is to be moved to a holding track, we can use
the following track selection to decide which holding track
to move it to. “ Move car ‘C’ to a holding track that
contains only cars with a smaller label; if there are several
such tracks, select one with largest label at its left end;
otherwise, select an empty track (if one remains).

Program to rearrange cars using queues.

void Output (int& minH, int& minQ,
 LinkedQueue<int> H[], int k, int n)
{
 // Move from hold to output and update minH and minQ.
 int c; // car index.
 // delete smallest car minH from queue minQ.
 H[minQ].deleteQ(c);
 cout<< “Move car “<<minH<< “ from holding track”
 << minQ << “ to output “<< endl;
// find new minH and minQ by checking front of all queues.
 MinH = n + 2;
for(int i=1; i<= k; i++)
 if(!H[I].IsEmpty() && (c = H[I].First()) < minH)
 {
 minH = c;
 minQ = i;
 }
}

bool Hold(int c, int& minH, int &minQ,
 LinkedQueue<int> H[], int k)
{// Add car C to a holding track.
 // Return false if no feasible holding track.
 // Return true otherwise.

 // find best holding track for car c initialize.

 int BestTrack = 0, BestLast = 0, x;

// scan holding tracks.
for(int i=1; i <= k; i++)
 if(!H[i].IsEmpty())
 {
 x = H[i].Last();
 if(c > x && x > BestLast)
 {
 BestLast = x;
 BestTrack = i;
 }
 }
 else if (!BestTrack) BestTrack = i;
 if (!BestTrack) return false;
 H[BestTrack].insert(c);
 Cout<<” Move car “<< c << “ from input “
 << “ to holding track “<< BestTrack << endl;
 if(c< minH)
 {
 minH = c;
 minQ = BestTrack;
 }
 return true;
}

A stack is simply another collection of data items and thus
it would be possible to use exactly the same specification
as the one used for our general collection. However,
collections with the LIFO semantics of stacks are so
important in computer science that it is appropriate to set
up a limited specification appropriate to stacks only.

Although a linked list implementation of a stack is possible
(adding and deleting from the head of a linked list
produces exactly the LIFO semantics of a stack), the most
common applications for stacks have a space restraint so
that using an array implementation is a natural and
efficient one.

Like stacks, queues can be used to remember the search
space that needs to be explored at one point of time in
traversing algorithms. Breadth-First search of a graph uses
a queue to remember the nodes yet to be visited.

A queue is natural data structure for a system to serve the
incoming requests. Most of the process scheduling or disk
scheduling algorithms in operating systems use queues.
Computer hardware like a processor or a network card also
maintain buffers in the form of queues for incoming
resource requests. A stack like data structure causes
starvation of the first requests, and is not applicable in
such cases. A mailbox or port to save messages to
communicate between two users or processes in a system
is essentially a queue like structure.

1111..1100.. SSuummmmaarryy

Pop
This operation removes the top element of the stack and
stores the top element into a location called poppedElement

Push
This operation places a new element on top of the stack

Program stack
A data structure, which the computer uses to implement
function calls among numerous other applications

Queue
A data structure in which the elements are added at one end,
called the rear, and deleted from the other end

Stack
A data structure in which the elements are added and
removed from one end only

Circular Queue
An implementation of queue data structure, in which the
first and last positions, in the container array are treated
as adjacent.

1111..1111.. TTeecchhnniiccaall TTeerrmmss::

1. Write a C++ program to test the array
implementation of stack.

2. Write about different types of queues.
3. What is a double-ended queue?
4. Explain how stack is useful in solving towers of

Hanoi?
5. Write a C++ program for linked representation of

queue.

Data Structures, Algorithms, and Applications in C++
by SAHNI.

AUTHOR:

Y. VENKATESWARA RAO, M.C.A.,
Lecturer,
Dept.Of Computer Science,
JKC College,
GUNTUR

1111..1122.. MMooddeell QQuueessttiioonnss::

1111..1133.. RReeffeerreenncceess::

